权重初始化方法
策略:
Activation Function | Uniform Distribution $[-r, +r]$ | Normal Distribution | |
---|---|---|---|
sigmoid | $r = 4\sqrt{\frac{6}{n_{in} + n_{out}}}$ | $\sigma = 4\sqrt{\frac{2}{n_{in} + n_{out}}}$ | Glorot |
tanh | $r = \sqrt{\frac{6}{n_{in} + n_{out}}}$ | $\sigma = \sqrt{\frac{2}{n_{in} + n_{out}}} = \sqrt{\frac{1}{n_{in}}}$ | Glorot |
relu | $r = \sqrt{2}\sqrt{\frac{6}{n_{in} + n_{out}}}$ | $\sigma = \sqrt{\frac{4}{n_{in} + n_{out}}} = \sqrt{\frac{2}{n_{in}}}$ | He |
示例:
1 | glorot = np.sqrt(2.0 / (self.deep_layers[i - 1] + self.deep_layers[i])) |