1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
import math from sklearn.cluster import KMeans import numpy as np
DEBUG_PRINT = False
def cluster_by_xmeans(data, min_k=1, max_k=10, activation_bic_ratio=0.8, init="k-means++", n_init=10, max_iter=300, tol=0.0001): """ :param data: list of points :param min_k, max_k: the min and max clusters for xmeans :param activation_bic_ratio: the bic threshold for k=1 :param init, n_init, max_iter, tol: see sklearn.cluster.KMeans :return: KMeans object """
if min_k > max_k: return None
cur_k = min_k while cur_k < max_k: if DEBUG_PRINT: print("cur_k = %d" % cur_k) new_k = 0
kmeans = KMeans(n_clusters=cur_k, init=init, n_init=n_init, max_iter=max_iter, tol=tol).fit(data) data_predicted = kmeans.predict(data) cluster_data_map = create_cluster_data_map(cur_k, data, data_predicted)
for i in range(cur_k): cur_cluster_data = cluster_data_map[i] cur_cluster_center = kmeans.cluster_centers_[i] R = len(cur_cluster_data) M = len(cur_cluster_center)
if R >= 2: if DEBUG_PRINT: print("\tcheck cluster %d of %d" % (i, cur_k)) equal_flag = True for j in range(1, R): if np.linalg.norm(np.array(cur_cluster_data[j]) - np.array(cur_cluster_data[0]) != 0): equal_flag = False if equal_flag: if DEBUG_PRINT: print("\t\tequal flag!") new_k += 1 else: child_kmeans = KMeans(n_clusters=2, init=init, n_init=n_init, max_iter=max_iter, tol=tol).fit(cur_cluster_data) cur_cluster_data_predicted = child_kmeans.predict(cur_cluster_data) child_cluster_data_map = create_cluster_data_map(2, cur_cluster_data, cur_cluster_data_predicted) if DEBUG_PRINT: print("\t\tnot equal")
if len(child_cluster_data_map[0]) != 0 and len(child_cluster_data_map[1]) != 0: bic1 = cal_BIC([cur_cluster_center], {0: cur_cluster_data}, R, M) bic2 = cal_BIC(child_kmeans.cluster_centers_, child_cluster_data_map, R, M) if DEBUG_PRINT: print("\t\tbic1 = %.2f" % bic1) if DEBUG_PRINT: print("\t\tbic2 = %.2f" % bic2) if bic1 <= bic2: new_k += 2 if DEBUG_PRINT: print("\t\tsplit:") for d in cur_cluster_data: print(d) elif cur_k == 1 and bic2 / bic1 >= activation_bic_ratio: new_k += 2 if DEBUG_PRINT: print("\t\tsplit (init):") for d in cur_cluster_data: print(d) else: new_k += 1 if DEBUG_PRINT: print("\t\tno split") for d in cur_cluster_data: print(d) else: new_k += 1 elif R == 1: if DEBUG_PRINT: print("\tno need check cluster %d of %d, count = 1" % (i, cur_k)) if DEBUG_PRINT: print(cur_cluster_data[0]) new_k += 1 else: if DEBUG_PRINT: print("\tshould not create this cluster %d of %d, count = 0" % (i, cur_k)) if cur_k != min_k: new_k -= 1 if new_k >= max_k: new_k = max_k break if new_k <= cur_k: if new_k >= min_k: cur_k = new_k else: cur_k = min_k break else: cur_k = new_k
if DEBUG_PRINT: print("cur_k = %d" % cur_k)
return KMeans(n_clusters=cur_k, init=init, n_init=n_init, max_iter=max_iter, tol=tol).fit(data)
def create_cluster_data_map(k, data, data_predicted): """ create a dict: {label: [points_of_this_label]} """
cluster_data_map = {} for i in range(k): cluster_data_map[i] = [] for i in range(len(data)): cluster_data_map[data_predicted[i]].append(data[i]) return cluster_data_map
def cal_BIC(centers, labelled_data, R, M): """ calculate the bayesian information criterion """
K = len(centers) sigma2 = cal_cluster_variance(centers, labelled_data, R, K) if sigma2 <= 0: sigma_multiplier = float("-inf") else: sigma_multiplier = M * 0.5 * math.log(sigma2) l = 0.0
for i in range(K): Rn = len(labelled_data[i]) l += Rn * math.log(Rn) - Rn * math.log(R) - Rn * 0.5 * math.log(2.0 * math.pi) \ - Rn * sigma_multiplier - (Rn - K) * 0.5
bic = l - K * (K * (M + 1.0)) / 2.0 * math.log(R)
return bic
def cal_cluster_variance(centers, labelled_data, R, K): """ calculate the variance for a set of clusters """
sum = 0 for cur_label in range(K): cur_center = centers[cur_label] cur_data = labelled_data[cur_label] for cur_point in cur_data: dist2 = np.sum(np.square(np.array(cur_point) - np.array(cur_center))) sum += dist2
v = sum * 1.0 if R - K > 0: v = v / (R - K)
return v
import colorsys def get_colors(color_count): hues = np.linspace(0, 1, color_count, endpoint=False) for i in range(color_count): hue = hues[i] rgb = [int(x * 255.0) for x in colorsys.hsv_to_rgb(hue, 1.0, 1.0)] yield "#{0:02x}{1:02x}{2:02x}".format(*rgb)
import matplotlib.pyplot as plt def plot_by_clusters(cluster_data_map, savepath=None): plt.figure(figsize=(8, 6))
actual_cluster_count = 0 for c in cluster_data_map: if len(cluster_data_map[c]) > 0: actual_cluster_count += 1
colors = get_colors(actual_cluster_count)
for c in cluster_data_map: if len(cluster_data_map[c]) > 0: col = next(colors) for d in cluster_data_map[c]: plt.plot(range(1, len(d) + 1), d, color=col)
plt.title("actually %d clusters" % actual_cluster_count, fontsize=16) plt.xlabel("time") plt.ylabel("kpi value")
if savepath is not None: plt.savefig(savepath) plt.close() else: plt.show()
if __name__ == '__main__': import time
""" # 5 clusters data = [[3.487966, 2.617258], [3.052439, 2.939565], [2.541804, 2.855116], [2.993872, 2.741651], [2.645149, 2.988544], [3.275658, 2.734759], [3.4383, 3.126239], [3.149475, 2.774026], [2.808158, 2.987228], [2.609178, 2.608235], [2.89733, 2.502805], [2.599489, 3.317544], [3.330802, 3.329103], [2.504006, 3.13618], [2.598317, 2.838451], [3.468053, -3.205529], [3.473971, -2.881551], [2.915968, -3.146783], [3.287449, -2.818057], [3.199882, -3.082526], [3.33998, -2.892212], [2.652254, -3.284869], [3.062117, -3.377962], [3.439667, -2.904208], [3.131923, -2.860522], [2.770989, -2.585313], [2.678803, -3.25333], [3.20751, -2.602797], [2.548267, -3.350991], [3.488662, -2.793679], [-3.419303, -3.460712], [-2.66534, -3.327664], [-2.843735, -2.520843], [-3.256643, -2.505888], [-2.723389, -3.145575], [-2.819643, -2.775133], [-3.074187, -3.408583], [-3.286655, -2.857967], [-2.650737, -2.697036], [-3.152726, -3.137763], [-2.999019, -2.686993], [-2.688528, -2.741138], [-2.592045, -3.197096], [-3.160052, -2.52554], [-3.301692, -2.993403], [-2.946691, 3.19919], [-3.408824, 2.648383], [-3.148617, 3.378614], [-2.563794, 2.702014], [-3.157149, 2.622525], [-2.975722, 2.604931], [-2.518403, 3.039607], [-3.140483, 3.32115], [-2.619992, 2.968638], [-2.875432, 3.374492], [-2.555934, 2.997142], [-3.254758, 2.814866], [-2.947021, 3.04663], [-3.177994, 2.874514], [-3.110401, 3.071354], [0.11111, 0.111111], [0.11111, -0.111111], [-0.11111, 0.111111], [-0.11111, -0.11111], [0.234232, 0.34322], [-0.23223, 0.3323]]
# use kmeans directly time1 = time.time() kmeans = KMeans(n_clusters=5) kmeans.fit(data) print("use kmeans directly".center(80, "-")) print("cur kmeans model: %s" % kmeans) print("cur centers: %s" % kmeans.cluster_centers_) print("labels of data: %s" % kmeans.predict(data)) time2 = time.time() print("timecost: %0.3f" % (time2 - time1)) print("".center(80, "-"))
print print
# use xmeans to find the right k time3 = time.time() xmeans = cluster_by_xmeans(data, n_init=20) print("use xmeans to find the right k".center(80, "-")) print("cur kmeans model: %s" % xmeans) print("cur centers: %s" % xmeans.cluster_centers_) print("labels of data: %s" % xmeans.predict(data)) time4 = time.time() print("timecost: %0.3f" % (time4 - time3)) print("".center(80, "-")) """
""" data0 = [(1.2, 0, 0), (1, 0, 0), (1.1, 0, 0), (0, 0.9, 0), (0, 0.8, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1.3), (0, 0, 1.1)]
data1 = [(1, 0, 0), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (0, 0, 1)]
data2 = [(1.2, 0, 0), (1, 0, 0), (1.1, 0, 0), (0, 0.9, 0), (0, 0.8, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1.3), (0, 0, 1.1), (1, 0, 1)] time1 = time.time() xmeans = cluster_by_xmeans(data0) print("cur kmeans model: %s" % xmeans) print("cur centers: %s" % xmeans.cluster_centers_) print("labels of data: %s" % xmeans.predict(data0)) time2 = time.time() print("timecost: %0.3f" % (time2 - time1))
print print time3 = time.time() xmeans = cluster_by_xmeans(data1) print("cur kmeans model: %s" % xmeans) print("cur centers: %s" % xmeans.cluster_centers_) print("labels of data: %s" % xmeans.predict(data1)) time4 = time.time() print("timecost: %0.3f" % (time4 - time3))
print print time5 = time.time() xmeans = cluster_by_xmeans(data2) print("cur kmeans model: %s" % xmeans) print("cur centers: %s" % xmeans.cluster_centers_) print("labels of data: %s" % xmeans.predict(data2)) time6 = time.time() print("timecost: %0.3f" % (time6 - time5)) """
""" xmeans = cluster_by_xmeans(data, max_k=4) data_predicted = xmeans.predict(data) cluster_data_map = create_cluster_data_map(len(xmeans.cluster_centers_), data, data_predicted) plot_by_clusters(cluster_data_map) """
|